

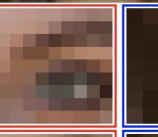
Component Attention Guided Face Super-Resolution Network: CAGFacea

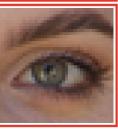
Ratheesh Kalarot Adobe

Tao Li Purdue University

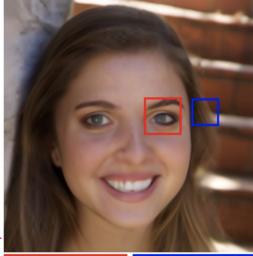
Prof. Fatih Porikli ANU, Qualcomm

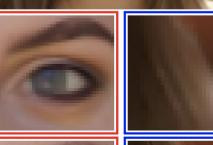
WACV 2020

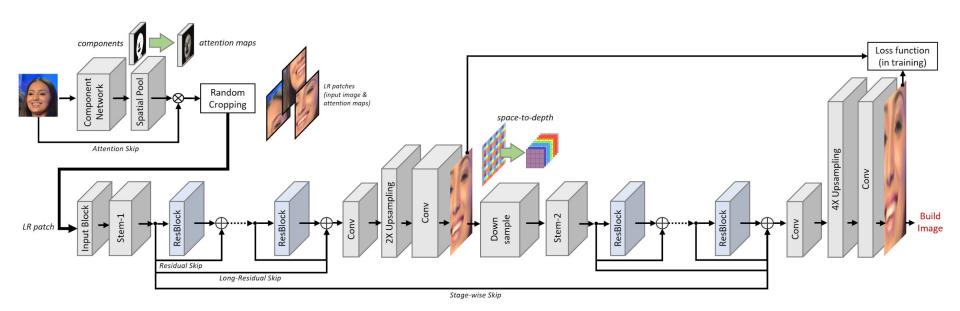

Paper #1272


FSR

Face Super Resolution (FSR):converts a low resolution (LR) face image to a corresponding high resolution(HR) image.

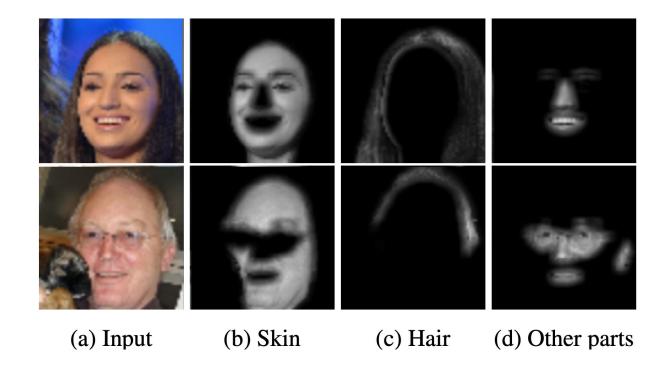

We present state-of-the-art FSR method results in a broad spectrum of real-life scenarios without inducing perceptual artifacts.





Contributions

- A novel a patch-based, fully convolutional network for face image face super-resolution
 - Processes patches in their original low-resolution throughout its backbone
 - Drives networks attention by face component masks
- Multi stage architecture
 - Recurrently apply the super-resolution stages to leverage on the reconstructed high-resolution outputs from the previous stage to enhance estimated high resolution details progressively.
- The experiments demonstrate SOTA
 - Best SSIM/PSNR/FID results compared to existing methods.
 - Not much perceptual artifacts!



CAGFace architecture

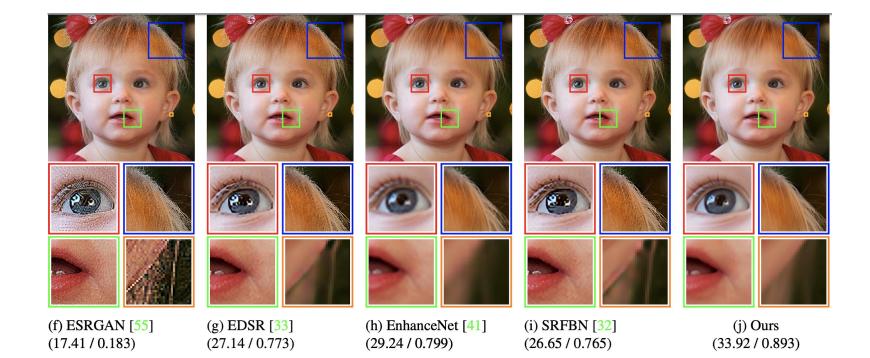
Sample Attention Maps

Results (256x256)

(a) Input (PSNR / SSIM)

(b) SRCNN [10] (22.82 / 0.668)

(c) EDSR [33] (21.78 / 0.689)

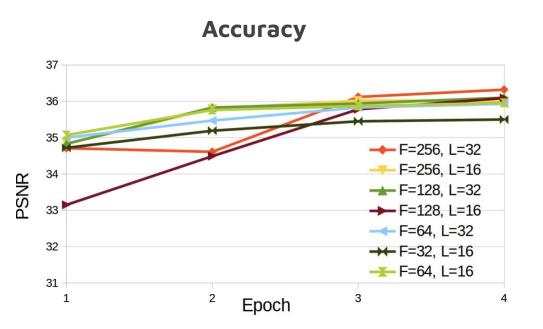

(d) SRGAN [30] (17.48 / 0.420)

(e) E-Net [41] (23.08 / 0.679)

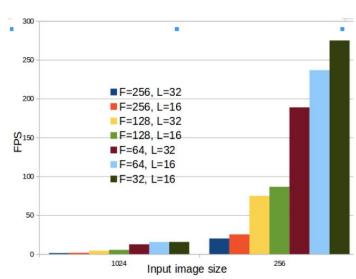
(f) SRFBN [32] (21.12 / 0.673)

(g) Ours (26.79 / 0.800)

Results (1024x1024)


Quantitative Results

	PSNR	SSIM	MS-SSIM	FID		PSNR	SSIM	MS-SSIM	FID
Bicubic	25.57	0.766	0.935	135.51	Bicubic	31.87	0.872	0.956	10.65
SRCNN [10]	23.12	0.688	0.900	147.21	SRCNN [10]	27.40	0.801	0.924	31.84
FSRCNN [11]	22.45	0.709	0.930	139.78	FSRCNN [11]	24.71	0.804	0.951	23.97
EDSR [33]	22.47	0.706	0.901	129.14	EDSR [33]	28.34	0.827	0.933	15.54
SRGAN [30]	17.57	0.415	0.757	156.07	SRGAN [30]	21.49	0.515	0.807	60.67
ESRGAN [55]	15.43	0.267	0.747	166.36	ESRGAN [55]	19.84	0.353	0.782	72.73
EnhanceNet [41]	23.64	0.701	0.897	116.38	EnhanceNet [41]	29.42	0.832	0.934	19.07
SRFBN [32]	21.96	0.693	0.895	132.59	SRFBN [32]	27.90	0.822	0.931	17.14
Ours	27.42	0.816	0.958	74.43	Ours	34.10	0.906	0.971	12.40


256x256 1024x1024

Ablation study

Speed

Thanks!

Please visit our poster #1272.

arXiv: https://arxiv.org/abs/1910.08761

