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Interpolation-based Methods?
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Interpolation-based Methods

Interpolation-based methods (bilinear, bicubic, and Lanczos) generate HR
pixel intensities by weighted averaging neighboring LR pixel values. Since
interpolated intensities are locally similar to neighboring pixels, these
algorithms generate good smooth regions but insufficient large gradients
along edges and at high-frequency regions [Yang et al., 2014].
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Edge-based Methods

Several SISR algorithms have been proposed to learn priors from edge
features for reconstructing HR images [Yang et al., 2014]. [Fattal, 2007]
proposed the depth and width feature of edges. [Sun et al., 2008]
sugguested using gradient profiles.
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Architecture of SR-GAN?
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Figure 4: Architecture of Generator and Discriminator Network with corresponding kernel size (k), number of feature maps
(n) and stride (s) indicated for each convolutional layer.

?[Ledig et al., 2017]



Architecture of Super-FAN3

Discriminator

Generator

Figure 2: The proposed Super-FAN architecture comprises three connected networks: the first network is a newly proposed
Super-resolution network (see sub-section 4.1). The second network is a WGAN-based discriminator used to distinguish
between the super-resolved and the original HR image (see sub-section 4.2). The third network is FAN, a face alignment
network for localizing the facial landmarks on the super-resolved facial image and improving super-resolution through a
newly-introduced heatmap loss (see sub-section 4.3).

3[Bulat and Tzimiropoulos, 2017]



© Loss Functions



Pixel loss

Pixel Loss

Given a low resolution image /R and the corresponding high resolution

image /"R pixel-wise MSE loss is used to minimize the distance between
R el [0
rW rH
vt = 739 3 S — G 1), g
x=1y=1

where W and H denote and size of /'R and r is the upsampling factor.




Perceptual Loss

The pixel-wise MSE loss achieves high PSNR values, however, it often
results in blurry and unrealistic images. To address this issue,

[Johnson et al., 2016, Ledig et al., 2017] proposed a perceptual loss where
the super-resolved image and the original image must also be close in
feature space.

Feature Reconstruction Loss

The loss over the ResNet features at a given level i is defined as

W: H:
1 i Hi
Ifeature/i = W Z z(d)i(lHR)x,y - d)i(c'-;@G(ILR))X,y)2 (2)

x=1y=1

where ¢; denotes the feature map obtained after the last convolutional
layer of the it block, and W; and H; are its size.




ruction Loss?

relub_3

Fig. 3. Similar to [6], we use optimization to find an image § that minimizes the
feature reconstruction loss E?é’at (4, y) for several layers j from the pretrained VGG-16
loss network ¢. As we reconstruct from higher layers, image content and overall spatial

structure are preserved, but color, texture, and exact shape are not.

*[Johnson et al., 2016]



Style Reconstruction Loss®
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Fig. 4. Similar to , we use optimization to find an image ¢ that minimizes the style

reconstruction loss th’il .(§,y) for several layers j from the pretrained VGG-16 loss

network ¢. The images ¢ preserve stylistic features but not spatial structure.

®[Johnson et al., 2016]



WGAN Loss

Woasserstein GAN Loss

wean = E [D(N] = E [DUIF]+ A E [(IIV;D(D)]l2 - 1] (3)
f~Pg ~P, i~P;
where P, is the data distribution and P is the generator G distribution
defined by / = G(IF). IP; is obtained by uniformly sampling along
straight lines between pairs of samples from P, and P.




Heatmap Loss

[Bulat and Tzimiropoulos, 2017] proposed a heatmap loss to enforce
structural consistency between the super-resolved and the corresponding
HR facial image.

Heatmap Loss

N
1 ~ _
/heatmap = N Z Z(M/’Z; - l\/ll',:j)2 (4)
n=1 i;j
where I\;I,’l, is the heatmap corresponding to the n'™" landmark at pixel (i, )
produced by running the FAN on the super-resolved image /"R, and /\7],-’1/- is
obtained by running another FAN on the original image /"R,

v
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Peak Signal to Ratio (PSNR)°

PSNR

Given a reference image f and a test image g, both of size M x N, the
PSNR (in dB) between f and g is defined as

MAX?
where
M N
MSE(f,g) Z Z —gig)? (6)
=1 j=1

MAX; is the maximum possible pixel value of the image. For example,
when the pixels are represented using 8 bits per sample (grey-level),
MAX, = 255.

A small value of the PSNR implies high numerical differences between
images (not necessarily to be of low quality!).
®[Hore and Ziou, 2010]




What's wrong with the MSE?’

MSE=306, SSIM=0.928 ISE=309, 0.98;
W-SSI! CW-SSIM=1.000
(c)

MSE-313, SSIM=0.730  MSE: 580 MSE-=308, SSIM=0.641
CW-SSIM-0.811 E . CW-SSIM-0.603
(9

MSE-871, SSIM=0.404 MSE=873, SSIM=0.399
CW-SSIM=0.933 CW-SSIM=0.933
(U} (0]

MSE=590, SSIM=-0.549 MSE=577, SSIM:
CW-SSIM=0.917 Cw-ssl!
(k) (U

IFG21 Comparison of image fdlity measuresfor “Eintein” image altered with diferent types o distorions. o) Reference image.
(b) Mean contrast stretch. (d) Luminance shift. (d) Gaussian noise (e) Impulsive noise

compression. (g) Blurring. (h) Spatial scaling (zooming out). (i) Spatial shift (to the ngm) () Spatial shift (to the left). (k) Rotation
(counter-clockwise). (1) Rotation (clockwise).

7[Wang and Bovik, 2009]



Structual Similarity Index Measure (SSIM) |

[Wang et al., 2004] separates the task of similarity measurement into three
comparisons:

@ Luminance
@ Contrast

@ Structure



Structual Similarity Index Measure (SSIM)
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Fig. 3. Diagram of the structural similarity (SSIM) measurement system.
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Structual Similarity Index Measure (SSIM) Il

Luminance comparison function /(x,

)
Z (7)

The luminance comparison function /(x, y) is a function of z, and p,.

Contrast comparison c(x, y)

1 N
ox = (=g 206 — m))* (8)
i=1

The contrast comparison c(x, y) is the comparison of o and o,.




Structual Similarity Index Measure (SSIM) IV

Structure comparison s(x, y)

K= e
&
= ©)
Oy
The structure comparison s(x, y) is conducted on these normalized signals.




Structual Similarity Index Measure (SSIM) V

SSIM

These three components are combined to generate an overall similarity
measure

S(x,y) = fl(x,y), c(x,y), s(x, y)) (11)

The general form of the Structural SIMilarity (SSIM) index between signal
x and y is defined as

SSIM(Xay) = [/(X7y)]a : [C(va)]ﬁ : [S(Xay)]fy (12)
Specifically, when oo = 8 = v = 1, the resulting SSIM index is

(2pxpy + G1) (204 + &)
(12 + 5 + G)(0F + 07 + C)

SSIM(x,y) = (13)

where Cq, G5, and (3 are small constants.

"[Wang et al., 2004, Wang and Bovik, 2009]
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Fig. 2. Comparison of
from 512x512 to 25 0.9168; (L) Mean-shifted image, M
JPEG compressed image, MSSIM = 0.6949; (¢) Blurred image, MSSIM = 0.7052; (f) Salt-pepper impulsive noise cont
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Feature Similarity Index Measure (FSIM)®
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Fig. 2. Illustration for the FSIM/FSIM ¢ index computation. f, is the reference image, and f- is a distorted version of f,.

FSIM,.

8[Zhang et al., 2011]



PSNR, SSIM, FSIM versus human and deep nets (LPIPS)?
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Figure 1: Which patch (left or right) is “closer” to the middle patch in these examples? In each case, the tradi-
tional metrics (L2/PSNR, SSIM, FSIM) disagree with human judgments. But deep networks, even across architectures
(Squeezenet [20], AlexNet [27], VGG [51]) and supervision type (supervised [46], self-supervised [13, 40, 42, 63], and
even unsupervised [26]), provide an emergent embedding which agrees surprisingly well with humans. We further cal-
ibrate existing deep embeddings on a large-scale database of perceptual judgments; models and data can be found at
https://www.github.com/richzhang/PerceptualSimilarity.

°[Zhang et al., 2018]
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Comparison of bicubic, SRResNet, SRGAN?°

bicubic SRResNet SRGAN
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.686

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4 upscaling]

O[Ledig et al., 2017]



Comparison of SRGAN and Super-FAN!!
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Figure 1: A few examples of visual results produced by our system on real-world low resolution faces from WiderFace.

SRGAN
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1[Bulat and Tzimiropoulos, 2017]



Ours-pixel-feature- Ours-pixel-feature-
bilinear SRGAN Ours-pixel Ours-pixel-feature heatmap heatmap-GAN Original image
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Figure 4: Visual results on LS3D-W. Notice that: (a) The proposed Ours-pixel-feature already provides better results than
those of SR-GAN [20]. (b) By additionally adding the newly proposed heatmap loss (Ours-pixel-feature-heatmap) the gener-
ated faces are better structured and look far more realistic. Ours-pixel-feature-heatmap-GAN is Super-FAN which improves
upon Ours-pixel-feature-heatmap by adding the GAN loss and by end-to-end training. Best viewed in electronic format.
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Challenges: from toy data to real-world problems!3

Computation Efficiency

Robustness

Real-world Performancel?

And more . ..

2Higher MSE does not have to be visually more appealing! Bicubic interpolation
usually achieves smaller MSE compared with those recovered by some example-based
approaches [Yang et al., 2010].

3[Huang and Yang, 2010]
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