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Privacy v.s. Usability
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Face Obfuscation

(a) Original (b) Blurring (c) Pixelation (d) Masking (e) Abstract (h) Inpainting



Face Obfuscation

DeepFake

Nirkin et al. FG'18



Unanswered Questions

- Is it private now?
- How private is it?
- Can it be more private/usable?

- Why?
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AnonymousNet: A Natural and Principled
Way for Face Obfuscation
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Stage-I: Facial Attribute Prediction Using CNN

Alignment and
Cropping

Original Landmark Detection

Preprocessing using a Deep Alignment Network (Kowalski et al. CVPR'17)



Stage-I: Facial Attribute Prediction Using CNN
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Using CeleA dataset (Liu et al. ICCV'15) as an example.



Stage-Il: Privacy-Aware Facial Semantic Obfuscation

t-Closeness Adversaries sometimes have knowledge of
the global distribution of sensitive attributes, for example,
the distributions of facial attributes are easy to obtain (see
Figure 6). To prevent privacy disclosure by an adversary
with such knowledge, [24] introduced t-closeness, which
updates k-anonymity with correspondence to the distribu-
tion of sensitive values, requiring that the distribution Sg
of sensitive values in any equivalence class £/ must be close
to their distribution S in the entire database, i.e.,

where d(.S, Sg) is the distance between distribution S and
Sr measured by the Earth Mover Distance [47] and £ is the
privacy threshold at which d(S, Sg) should not exceed.



Algorithm 1: The PPAS algorithm.

Result: Attribute set A",
Attribute set A +— {F,,...,E,};
Attribute set A’ < & ;
Size N « ||A]l ;
for:=1,...,Ndo
if d(S, Sg,) <t then

| Add attribute E; to A’ ;
else

‘ Add attribute = F; to A’ ;
end

© o N e AW N

10 end
11 return A" < Perturbation(A’,€) ;

Privacy-Preserving Attribute Selection
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Stage-lll: Natural Face Generation Using GAN

After obtaining facial attributes that satisfies privacy constraints computed from
previous steps, we train a Generative Adversarial Network (GAN) for face at-
tributes translation, which is designed as two players, D and (G, playing a minmax
game with adversarial loss:

Lodo = Eflog(D(x))] + Eflog(1 — D(G(x)))] (1)

where generator (5 is trained to fool discriminator DD, who tries to distinguish real
images from adversarial ones.

Choi et al. CVPR'18



Generated Examples.
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Stage-IV: Adversarial Perturbation against Adversaries

Original Perturbation Adversary
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Experimental Results




Comparison

(a) Original ~ (b) Blurring  (c) Pixelation (d) Ours
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Summary

- We proposed the AnonymousNet for natural face de-identification.

- The framework encompasses four stages: facial feature prediction,
semantic-based facial attribute obfuscation guided by privacy metrics,
photo-realistic and de-identified face generation, and adversarial perturbation.

- Privacy is preserved in a natural and principled manner.
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Next Steps

- A formally definition of e-Differential Privacy for facial images.
- Principled and end-to-end models for privacy preservation.

- Extended frameworks for sequential domains.
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Thank you!

Poster #134 | @Tao_CS

The paper is available on: https://arxiv.org/abs/1904.12620
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