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Abstract—There is growing concern about image privacy due
to the popularity of social media and photo devices, along with
increasing use of face recognition systems. However, established
image de-identification techniques are either too subject to re-
identification, produce photos that are insufficiently realistic, or
both. To tackle this, we present a novel approach for image
obfuscation by manipulating latent spaces of an unconditionally
trained generative model that is able to synthesize photo-realistic
facial images of high resolution. This manipulation is done in a
way that satisfies the formal privacy standard of local differential
privacy. To our knowledge, this is the first approach to image
privacy that satisfies ε-differential privacy for the person.

I. INTRODUCTION

Image obfuscation techniques have been used to protect
sensitive information, such as human faces and confidential
texts. However, recent advances in machine learning, espe-
cially deep learning, make standard obfuscation methods such
as pixelization and blurring less effective at protecting privacy;
it has been showed that over 90% of blurred faces can be re-
identified by commerical face recognition systems [1].

Many attempts have been made to obfuscate images and
some privacy guarantees are provided. A pixelization method
proposed in [2] satisfies pixel-wise ε-differential privacy. How-
ever, the utility of the pixelized images is far from satisfactory,
as the images appear like traditional pixelization or blurring
techniques. A more serious problem is that this provides
differential privacy for pixels, not for the individuals pictured
in the image, and thus is subject to re-identification of the
individuals in the image [3]. Other obfuscation methods have
been proposed recently to balance privacy and utility. For
example, [4] adopted generative adversarial networks (GANs)
for facial image obfuscation by identifying a face and accord-
ingly inpainting it with a synthesized face alternative. This
unfortunately has the potential to lose important characteristics
of the original image; [5] leveraged a conditional GAN to
manipulate facial attributions in accordance with different
privacy requirements. These approaches suffer the common
failing that they do not provide a formal privacy guarantee. As
such, they may be subject to re-identification or re-construction
attacks.

In this paper, we show how differential privacy can be
provided at the level of the individual in the image. The
key idea is that we transform the image into a semantic
latent space. We then add random noise to the latent space
representation in a way that satisfies ε-differential privacy. We
then generate a new image from the privatized latent space
representation. This ensures a formal privacy guarantee, while
providing an image that preserves important characteristics of

Fig. 1: Can you identify the authors? These are images of
the authors, with noise added that satisfies differential privacy
sufficient to prevent identification attacks.

the original, and some level of photo-realism. A key to formal
privacy methods is randomness: the same image privatized
twice will not look the same (as demonstrated in fig. 1, which
includes multiple images of some authors.), and it is a key
component to prevent reconstruction attacks. We show that
randomized manipulations in the latent semantic space can
be expected to provide realistic images (e.g., fig. 2). The
method guarantees similarity-based indistinguishability among
images, providing privacy guarantees in worst-case scenarios
and boosting the utility of the obfuscated image.

II. DIFFERENTIALLY PRIVATE IMAGING

From the above, it should now seem obvious how we can get
differential privacy: Add noise to the latent vector in a way
that satisfies differential privacy. This leaves three questions
to address in this section: What mechanism do we use to add
noise? How much noise do we need to add? And how to obtain
the latent vector in the first place? Answering these questions
requires a better understanding of the latent space.

a) Latent Space and Image Encoding: It has been widely
observed that there is linearity and continuity in the latent
space of GAN [7] with vector arithmetic phenomenon such as
addition and subtraction invariance [8]. Given a facial image,
the problem of finding its corresponding latent representation
can be considered as an optimization problem [1] where we
search the latent space to find a latent vector, from which the
reconstructed image is close enough (and hopefully identical)
to the query image.

b) Privacy Mechanism: A key issue in using the Laplace
mechanism for ε-differential privacy is determining the sen-
sitivity. Inspired by [9], we use the maximum observed
sensitivity to clip images in the latent space. Any values
that fall outside the observed bounds are clipped to the
observed bounds, guaranteeing that the range of the input to
the differential privacy mechanism is known, allowing us to
determine sensitivity.
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Fig. 2: Experimental results with different privacy budgets. In our experiment, latent codes are under a 25%/75% clipping
setting [6] and the number of latent components is 18× 512 = 9216, i.e., privacy budget ε =

∑
εij = 9216 · εij .

c) Algorithm: The idea of providing ε-local differential
privacy is that the privacy budget ε is divided among the
various components in the latent space. Each is used, along
with the sensitivity derived from the clipping values for that
component (based solely on the public training data), to
determine a random draw of Laplace noise for that component,
which is again clipped (a postprocessing step). This gives an
ε-differentially private version of the image in the latent space.
We then use this latent vector, with no reference to the original
image or the latent space transformation of the original image,
to generate an image using the previously described generative
network. Algorithm 1 outlines the approach.

Theorem 1. Algorithm 1 provides ε-local differential privacy.

Proof. M is the randomized mechanism in algorithm 1. Using
the notations in [10] and above, we have

Pr[M(v, f, ε) = s]

Pr[M(v′, f, ε) = s]
=

Pr[Lap(SL · wf/ε)] = s− f(v)
Pr[Lap(SL · wf/ε)] = s− f(v′)

=

SL·wf

ε · exp(− |s−f(v)|εSL·wf
)

SL

ε · exp(−
|s−f(v′)|ε
SL·wf

)

= exp(
ε|f(v′)− f(v)|

SL · wf
) ≤ exp(ε)

= exp(
ε|f(v′)− f(v)|

SL
) ≤ exp(ε · wf )

III. CONCLUSION

In this work, we provide the first meaningful formal def-
inition of ε-differential privacy for images by leveraging the
latent space of images and Laplace mechanism. A practical
framework is presented to tackle real world images. Experi-
mental results (e.g., fig. 2) show that the proposed mechanism
is able to preserve privacy in accordance with privacy budget
ε while maintain high perceptual quality for sufficiently large
values of ε. We leave more analysis and results in the full
version of this paper in [6].

Algorithm 1: DP Imaging with Laplace Mechanism

Require: Input image X(i);
Require: Encoder f : X → Z;
Require: Generator g : Z → X ;
Require: Latent space sensitivities SLj ;
Require: Latent space weights wj s.t.

∑
wj = 1;

Require: Privacy parameter ε;
Require: Laplace distribution Lap(0, λ);
Require: Clipping function fc(i, j, α);

1: latent vector Z(i) ← f(X(i));
2: for each latent semantics Z(i)

j do
3: obtain a random δ from Lap(SLj · wj/ε);
4: Z

′(i)
j ← Z

(i)
j + δ;

5: Z
′′(i)
j ← fc(Z

′(i)
j );

6: end for
7: desired noisy image X ′(i) ← g(Z ′′(i));
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