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Abstract

There is growing concern about image privacy due to the popularity
of social media and photo devices, along with increasing use of face
recognition systems. However, established image de-identification tech-
niques are either too subject to re-identification, produce photos that are
insufficiently realistic, or both. To tackle this, we present a novel ap-
proach for image obfuscation by manipulating latent spaces of an un-
conditionally trained generative model that is able to synthesize photo-
realistic facial images of high resolution. This manipulation is done in
a way that satisfies the formal privacy standard of local differential pri-
vacy. To our knowledge, this is the first approach to image privacy that
satisfies ε-differential privacy for the person.

1 Introduction

Image obfuscation techniques have been used to protect sensitive information, such
as human faces and confidential texts. However, recent advances in machine learn-
ing, especially deep learning, make standard obfuscation methods such as pixelization
and blurring less effective at protecting privacy; it has been showed that over 90% of
blurred faces can be re-identified by commerical face recognition systems [1]. Many
attempts have been made to obfuscate images and some privacy guarantees are pro-
vided (e.g., [2, 3]) However, they do not provide a formal privacy guarantee.

In this paper, we show how differential privacy can be provided at the level of the
individual in the image. The key idea is that we transform the image into a semantic
latent space. We then add random noise to the latent space representation in a way
that satisfies ε-differential privacy. We then generate a new image from the privatized
latent space representation. This ensures a formal privacy guarantee, while providing
an image that preserves important characteristics of the original, and some level of
photo-realism.

Figure 1: Can you identify the authors? These are images of the authors, with noise added that satisfies
differential privacy sufficient to prevent identification attacks.

2 Differentially Private Imaging

Latent Space and Image Encoding It has been widely observed that there is linearity and
continuity in the latent space of GAN [4] with vector arithmetic phenomenon such as
addition and subtraction invariance [5]. Given a facial image, the problem of finding
its corresponding latent representation can be considered as an optimization problem
[1] where we search the latent space to find a latent vector, from which the recon-
structed image is close enough (and hopefully identical) to the query image. Figure 2
illustrates the optimization pipeline.
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Figure 2: An optimization pipeline for GAN inversion.

Privacy Mechanism A key issue in using the Laplace mechanism for ε-differential pri-
vacy is determining the sensitivity. Inspired by [6], we use the maximum observed
sensitivity to clip images in the latent space. Any values that fall outside the observed
bounds are clipped to the observed bounds, guaranteeing that the range of the input to
the differential privacy mechanism is known, allowing us to determine sensitivity.
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Figure 3: Clipping in the latent space. The three outputs (from left to right) are clipping at 0%/100%,
15%/85%, and 30%/70%, respectively.

Algorithm The idea of providing ε-local differential privacy is that the privacy budget
ε is divided among the various components in the latent space. Each is used, along
with the sensitivity derived from the clipping values for that component (based solely
on the public training data), to determine a random draw of Laplace noise for that com-
ponent, which is again clipped (a postprocessing step). This gives an ε-differentially
private version of the image in the latent space. Algorithm 1 outlines the approach.
Theorem 1. Algorithm 1 provides ε-local differential privacy.
Proof.M is the randomized mechanism in algorithm 1. Using the notations in [7] and
above, we have

Pr[M(v, f, ε) = s]

Pr[M(v′, f, ε) = s]
=

Pr[Lap(SL · wf/ε)] = s− f (v)
Pr[Lap(SL · wf/ε)] = s− f (v′)

=

SL·wf
ε · exp(−

|s−f (v)|ε
SL·wf )

SL
ε · exp(−

|s−f (v′)|ε
SL·wf )

= exp(
ε|f (v′)− f (v)|

SL · wf
) ≤ exp(ε)

= exp(
ε|f (v′)− f (v)|

SL
) ≤ exp(ε · wf)

Algorithm 1: DP Imaging with Laplace Mechanism
Require: Input image X(i);
Require: Encoder f : X → Z;
Require: Generator g : Z → X ;
Require: Latent space sensitivities SLj;
Require: Latent space weights wj s.t.

∑
wj = 1;

Require: Privacy parameter ε;
Require: Laplace distribution Lap(0, λ);
Require: Clipping function fc(i, j, α);

1: latent vector Z(i)← f (X(i));
2: for each latent semantics Z(i)

j do
3: obtain a random δ from Lap(SLj · wj/ε);
4: Z

′(i)
j ← Z

(i)
j + δ;

5: Z
′′(i)
j ← fc(Z

′(i)
j );

6: end for
7: desired noisy image X ′(i)← g(Z ′′(i));

3 Conclusion

In this work, we provide the first meaningful formal definition of ε-differential privacy
for images by leveraging the latent space of images and Laplace mechanism. Exper-
imental results show that the proposed mechanism is able to preserve privacy in ac-
cordance with privacy budget ε while maintain high perceptual quality for sufficiently
large values of ε. We leave more analysis and results in the full paper [8].
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Figure 4: Experimental results with different privacy budgets. In our experiment, latent codes are under
a 25%/75% clipping setting [8] and the number of latent components is 18 × 512 = 9216, i.e., privacy
budget ε =

∑
εij = 9216 · εij.
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